UTN

University of Technology Nuremberg

Probabilistic and Deep Learning Techniques for Autonomous Navigation and Automated Driving

Wolfram Burgard

Autonomous Robots

- Perceive their environment with their sensors,
- build a model/representation, and use it to
- generate their actions

Major Components of the Software-Stack of a Self-Driving Car

Probabilistic Robotics

Explicit representation and utilization of uncertainty

Perception = state estimation

$$Bel(x \mid z, u) = \alpha p(z \mid x) \int_{x'} p(x \mid u, x') Bel(x') dx'$$

Action = utility optimization

$$\pi^*(x) = \underset{u}{\operatorname{argmax}} \sum_{x'} p(x' \mid u, x) V^*(x')$$

Probabilistic-Robotics-Based...

Precise Localization and Positioning for Mobile Robots

Accurate Localization in Dynamic Environments

Translational error [m]

- KUKA omniMove (11t)
- Safety scanners
- Error in the area of millimeters
- Even in dynamic environments

Pose-Graph-SLAM

Goal: Find the poses of the nodes minimizes the negative log likelihood of the observations

Maps in Automated Driving

Useful for

- Perception
- Tracking
- Localization
- Prediction
- Planning
- Control

. . .

Challenges for HD Maps

- Expensive to acquire
- Assumptions about availability of features
- Change detection
- Domain adaptation
- Expensive to update
- ..
- L5 barrier

Deep-Learning-Based...

Example: Semantic Segmentation and Panoptic Tracking

EfficientLPS Architecture

- Scan unfolding projection
- Backbone: PCM + Encoder + REN + 2-way FPN
- Semantic Head, Instance Head, Panoptic Fusion Module
- Reprojection into 3D using kNNs

Vision-Based MOPT

Deep-Learning-Based...

Probabilistic-Robotics-Based...

Example: Uncertainty-Aware Panoptic Segmentation

Semantic segmentation

Semantic uncertainties

Example: Uncertainty-aware Panoptic Segmentation

Semantic segmentation

Instance segmentation

Semantic uncertainties

Instance uncertainties

Example: Uncertainty-aware Panoptic Segmentation

Semantic segmentation

Instance segmentation

Panoptic segmentation

Semantic uncertainties

Instance uncertainties

Panoptic uncertainties

Uncertainty-aware LiDAR Panoptic Segmentation

Panoptic segmentation

Panoptic uncertainties

Qualitative Results: Uncertainty vs Error

Panoptic uncertainties

Error map

Learning Manipulation Tasks

Current Affordance Learning Methods

- Require heavy supervision
- Limited in the complexity of the actions they model

[Nguyen et al. 2017]

Learning Affordances from Play data

- Play data is structured by human knowledge of object affordances
- Implicitly contain human affordances

Real-world Experiments

Selected affordance region

Detected affordance region center

Real-world: Generalization

Selected affordance region

Detected affordance region center

Visual Language Maps for Robot Navigation

Chenguang Huang¹, Oier Mees¹, Andy Zeng², Wolfram Burgard³

¹Freiburg University, ²Google Research, ³University of Technology Nuremberg

Google Research

Visual Language Models for SLAM

Similarity measure:

- Stationary objects
- Room types
- Movable objects

First Results

Summary

- **Deep Learning is taking over** more and more tasks
- Probabilistic state estimation still plays an important role
- To integrate both, we need deep learning approaches with properly calibrated likelihoods
- We lack good solutions without "argmax" operations anywehere in the stack
- Language models open a new direction in navigation
- Decision making under uncertainty is key!

University of Technology Nuremberg

UTN

Thank You!