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Autonomous Robots

= Perceive their environment with their sensors,
= build a model/representation, and use it to
= generate their actions




Major Components of the Software-
Stack of a Self-Driving Car
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Probabilistic Robotics

Explicit representation and utilization of uncertainty

- Perception = state estimation

Bel(x | z,u) = ap(z]|x) /,p(az | u,2’) Bel(z")dx'
xXr

- Action = utility optimization

m*(z) = argmax ) p(z' | u,z)V*(z")
u /

i



Probabilistic-Robotics-Based...
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Precise Localization and Positioning for
Mobile Robots




Accurate Localization in Dynamic
Environments

= KUKA omniMove
(11t)

= Safety scanners

= Error in the area of
millimeters

= Even in dynamic
environments
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Pose-Graph-SLAM

Goal: Find the poses of the nodes minimizes the negative log
likelihood of the observations
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Maps in Automated Driving
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Challenges for HD Maps

Expensive to
acquire
Assumptions about
availability of
features

Change detection
Domain adaptation
Expensive to update

L5 barrier




Deep-Learning-Based...
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Example: Semantic Segmentation and
Panoptic Tracking




EfficientLPS Architecture
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= Scan unfolding projection

= Backbone: PCM + Encoder + REN + 2-way FPN

= Semantic Head, Instance Head, Panoptic Fusion Module
= Reprojection into 3D using kNNs
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Vision-Based MOPT




Deep-Learning-Based...

&
Mappin Ma
161616 1606 : e P
Interpretation Localization [«
_— i
Sensors T I‘VI‘

4 » Prediction

& &
Actuators Control < Planning




Probabilistic-Robotics-Based...

116 1b
Mappin Ma
wa >/' pping p
Interpretation Localization [«
_— 161616 16 16
Sensors T l‘vl‘r
4 » Prediction
& &)
Actuators Control < Planning




Example: Uncertainty-Aware Panoptic
Segmentation

Semantic segmentation

Semantic uncertainties



Example: Uncertainty-aware Panoptic
Segmentation

Semantic segmentation Instance segmentation

Semantic uncertainties Instance uncertainties



Example: Uncertainty-aware Panoptic
Segmentation

Semantic segmentation Instance segmentation

Semantic uncertainties Instance uncertainties Panoptic uncertainties



Uncertainty-aware LIDAR Panoptic
Segmentation

Panoptic segmentation Panoptic uncertainties



Qualitative Results: Uncertainty vs Error

Panoptic uncertainties



Learning Manipulation Tasks

Where can |
interact?
How can | do it




Current Affordance Learning Methods

= Require heavy supervision
= Limited in the complexity of the actions they model

background
pound

[Nguyen et al. 2017]




Learning Affordances from Play data

= Play data is structured by human knowledge of object
affordances

- Implicitly contain human affordances




Real-world Experiments

Selected affordance
region

Detected affordance
region center




Real-world: Generalization

Selected affordance
region

Detected affordance
region center




Visual Language Maps for Robot Navigation
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Visual Language Models for SLAM

CLIP GPT3 CLIP
Generating potential room
Sorting of objects: types: Sorting of room types:
,Photoofa ...” JI think | see a (), () and () ,Photoofa ...”

in here. Therefore, this place
is most probably a ..."

Similarity measure:
« Stationary objects
*+ Room types
* Movable objects




First Results
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Summary

= Deep Learning is taking over more and more tasks

= Probabilistic state estimation still plays an important
role

= To integrate both, we need deep learning approaches with
properly calibrated likelihoods

= We lack good solutions without “argmax” operations
anywehere in the stack

= Language models open a new direction in navigation
= Decision making under uncertainty is key!
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